Preliminary communication

METALLORGANISCHE VERBINDUNGEN DER LANTHANOIDE

XXIII*. SYNTHESE UND STRUKTUR VON [Li(tmed)₂][C₅Me₅Lu(CH₃)₃]

HERBERT SCHUMANN*, ILSE ALBRECHT, JOACHIM PICKARDT und EKKEHARDT HAHN

Institut für Anorganische und Analytische Chemie der Technischen Universität Berlin, D-1000 Berlin 12 (BR Deutschland)

(Eingegangen den 26. Juli 1984)

Summary

LaCl₃, YbCl₃ and LuCl₃ react with NaC₅Me₅ and LiCH₃ or LiCH₂SiMe₃ in tetrahydrofuran in the presence of tetramethylethylenediamine (tmed) under formation of the new complexes $(C_5Me_5)_2Ln(\mu-CH_3)_2Li(tmed)$ (Ln = La, Lu), [Li(dme)₂][(C₅Me₅)₂Lu(CH₂SiMe₃)₂] and [Li(tmed)₂][C₅Me₅Ln(CH₃)₃] (Ln = Yb, Lu). The structure of [Li(tmed)₂][C₅Me₅Lu(CH₃)₃] has been determined by X-ray diffraction.

Organolanthanoid-Verbindungen vom Typ $(C_5H_5)_2LnR$ oder $(C_5Me_5)_2LnR$ werden durch Umsetzung von äquivalenten Mengen Dicyclopentadienyl- bzw. Bis(pentamethylcyclopentadienyl)-lanthanoidhalogenid mit Lithiumorganylen erhalten. Einige Derivate wurden röntgenographisch untersucht [2]. Mit überschüssigem Lithiummethyl und in Gegenwart von Amin oder Ether bilden Dicyclopentadienyllanthanoidhalogenide die Verbindungen $(C_5H_5)_2Ln(\mu-CH_3)_2$ -Li (L_2) (Ln = Er, Lu) [1]. Entsprechende Bis(pentamethylcyclopentadienyl)-Derivate sind von Ytterbium und Lutetium bekannt [3]. Die Zahl der Monocyclopentadienyllanthanoid-Derivate mit η^1 -Ln-C-Bindungen beschränkt sich dagegen bisher auf die beiden Verbindungen $C_5H_5H_0(C\equiv CC_6H_5)_2$ [4] und $C_5Me_5Lu[(CH_2)_2P(CH_3)_2]_2$ [5].

 $LaCl_3$ oder $LuCl_3$ reagiert mit Pentamethylcyclopentadienylnatrium und Methyllithium bzw. Trimethylsilylmethyllithium im Molverhältnis 1/2/2 in THF und in Anwesenheit von Tetramethylethylendiamin (tmed) oder Dimethoxyethan (dme) bei -78° C zu Bis(pentamethylcyclopentadienyl)lanthanoiddialkyllithiumkomplexen, die durch tmed oder dme stabilisiert sind:

^{*}Teil XXII siehe Ref. 1.

Verbindung		H ₁				¹³ C					
		δ(C _s Me _s)	δ (CH _{3/2})	δ (CH ₃ Si)	δ (tmed/dme)	δ(C ₅ Me ₅)	$\delta (C_{s}Me_{s})$	δ (CH _{3/2})	δ(CH ₃ Si)	δ (tmed/dme)	
$(C_5Me_5)_2La(\mu-CH_3)_2Li(tmed)^a$ $(C_5Me_5)_2Lu(\mu-CH_3)_2Li(tmed)^a$ $[Li(dme)_2][(C_5Me_5)_2Lu(CH_5SiMe_3)_2]^a$ $[Li(tmed)]_5[Lu(CH_3)_6]^a$ $[Li(tmed)_1][C_5Me_5Lu(CH_3)_3]^a$ $(C_5H_2)_2Lu(\mu-CH_3)_2Li(tmed)^a$	8 8 2 3 3 5 T	1.97 1.93 1.88 2.05	-1.43 -1.77 -1.86 -1.18 -1.18 -1.34 -0.89	-0.11	2.25/2.4 2.28/2.44 3,26/3.42 2.29/2.44 1.84/1.67	11.11 12.1 12.76 11.23	$ \begin{array}{c} 115.91\\ 111.2\\ 112.39\\ 112.57\\ 108.49^{c} \end{array} $	25.83 22.2 25.87 4.5 28.7 15.77	6.27	45.88/58.26 46.0/58.8 58.79/72.55 45.9/58.2 45.79/58.1 45.94/56.53	1

¹H- UND ¹³C-NMR-DATEN DER DIAMAGNETISCHEN VERBINDUNGEN 1, 2, 3, 5,6 UND 8 (§ in ppm, negatives Vorzeichen entspricht Hochfeldverschiebung,

TABELLE 1

^{*a*} In $C_6 D_6/THF - d_8$. ^{*b*} In Diethylether. ^{*c*} $\delta(C_5 H_5)$.

 $LnCl_{3} + 2 NaC_{5}Me_{5} + 2 LiCH_{3} \frac{THF/tmed}{-78^{\circ}C} \\ (C_{5}Me_{5})_{2}Ln(\mu-CH_{3})_{2}Li(tmed) + 2 NaCl + LiCl \\ (1, Ln = La; \\ 2, Ln = Lu) \\ LuCl_{3} + 2 NaC_{5}Me_{5} + 2 LiCH_{2}SiMe_{3} \frac{THF/dme}{-78^{\circ}C} \\ [Li(dme)_{2}][(C_{5}Me_{5})_{2}Lu(CH_{2}SiMe_{3})_{2}] + 2 NaCl + LiCl \\ (3)$

Setzt man YbCl₃ oder LuCl₃ unter sonst gleichen Bedingungen mit 1 Äquivalent NaC₅Me₅ und 4 Äquivalenten Methyllithium um, so entstehen lediglich die auf anderen Wegen bereits erhaltenen homoleptischen Verbindungen [Li(tmed)]₃[Ln(CH₃)₆] (4, Ln = Yb; 5, Ln = Lu) sowie LiC₅Me₅ [6].

Erst beim Einsatz von $LnCl_3$, NaC_5Me_5 und CH_3Li im Molverhältnis 1/1/3 und Zugabe von Diethylether zum Reaktionsgemisch, gelingt es, nadelförmige Kristalle der farblosen Lutetiumverbindung 6 bzw. der goldgelben Ytterbiumverbindung 7 zu erhalten:

$$LnCl_{3} + NaC_{5}Me_{5} + 3 LiCH_{3} \qquad \frac{THF/tmed}{Et_{2}O, -78^{\circ}C}$$

$$[Li(tmed)_{2}][C_{5}Me_{5}Ln(CH_{3})_{3}] + 2 LiCl + NaCl$$

$$(6, Ln = Lu;$$

$$7, Ln = Yb)$$

Die Verbindungen 1-7 sind ausnahmslos extrem luft- und feuchtigkeitsempfindlich und aus Diethylether umkristallisierbar. Die ¹H-NMR-Spektren (Tab. 1) zeigen neben den Signalen für die C_5Me_5 -Gruppen und die tmed oder dme Liganden im Falle der diamagnetischen Verbindungen 1, 2, 3, 5 und 6 sowie der, zu Vergleichszwecken mit in die Tabelle aufgenommenen Verbindung $(C_{5}H_{5})_{2}Lu(\mu-CH_{3})_{2}Li(tmed)$ (8) [1] nur noch Singulett-Signale zwischen -0.89 (8) und -1.86 ppm (3) für die Protonen der CH₃- bzw. CH₂-Gruppen. Diese Signale bleiben im Temperaturbereich von -80 bis +40°C unverändert. Es liegt somit kein temperaturabhängiges Gleichgewicht zwischen endständigen und verbrückenden Methylgruppen vor, wie dies für $[(C_5Me_5)_2Lu(CH_3)_2]$ nachgewiesen wurde [7]. 1 und 2 liegen deshalb in Lösung als über Methylgruppen verbrückte "Neutralkomplexe" (C_5Me_5)₂Ln(μ -CH₃)₂Li(tmed) vor, wie es für das analoge $(C_{5}H_{5})_{2}$ Er(μ -CH₃)₂Li(tmed) durch Röntgenstrukturanalyse nachgewiesen werden konnte [1], während für 3 mit den sperrigen Trimethylsilylmethylliganden und auch für 6 und 7 eine Formulierung als Ionenpaar $[Li(tmed)_2]^+$ - $[C_{3}Me_{3}Ln(CH_{3})_{3}]^{-}$ mit nur endständigen CH₃-Gruppen richtig ist.

Das ¹H-NMR-Spektrum der paramagnetischen Ytterbiumverbindung 7 zeigt stark verbreiterte Signale für alle Methylprotonen (Tab. 2). Die Yb---CH₃-Signale sind ausserdem stark hochfeldverschoben. Diese paramagnetische Verschiebung nimmt mit fallender Temperatur zu.

SU MHZ, IN THF-d ₈)							
δ(CH ₃ Yb)	$\delta(C_{5}Me_{5})$	δ (NCH ₃)	$\delta(\text{NCH}_2)$				
-102.9							
-87.2	-1.55	2.48	2.66				
67.0	-0.43	2.29	2.47				
-54.6	0.31	2.20	2.36				
-35.6	1.25	2.16	2.31				
	$\frac{\delta (CH_{3}Yb)}{-102.9}$ -87.2 -67.0 -54.6 -35.6	$\frac{b_{z, in THF-d_{g}}}{\delta(CH_{3}Yb)} \frac{\delta(C_{5}Me_{5})}{\delta(C_{5}Me_{5})}$ -102.9 $-87.2 -1.55$ $-67.0 -0.43$ $-54.6 0.31$ $-35.6 1.25$	$\begin{array}{c} z_{, \text{ in THF-}d_8} \\ \hline \delta(\text{CH}_3\text{Yb}) & \delta(\text{C}_5\text{Me}_5) & \delta(\text{NCH}_3) \\ \hline -102.9 \\ -87.2 & -1.55 & 2.48 \\ -67.0 & -0.43 & 2.29 \\ -54.6 & 0.31 & 2.20 \\ -35.6 & 1.25 & 2.16 \end{array}$	z_1 in THF- d_8) $\delta(CH_3Yb)$ $\delta(C_5Me_5)$ $\delta(NCH_3)$ $\delta(NCH_2)$ -102.9 -87.2 -1.55 2.48 2.66 -67.0 -0.43 2.29 2.47 -54.6 0.31 2.20 2.36 -35.6 1.25 2.16 2.31			

¹H-NMR-DATEN VON [Li(tmed)₂][C_5 Me₅Yb(CH₃)₃] (7) ZWISCHEN -92 UND +30°C (δ in ppm, 80 MHz, in THF- d_5)

Die Lutetiumverbindung 6 kristallisiert orthorhombisch, Raumgruppe $Pc2_1n$ (Nichtstandardaufstellung von $Pna2_1$, Nr. 33) mit a 951.6(5), b 1390.8(6), c 2507.8(9) pm und Z = 4. Unter Verwendung eines automatischen Vierkreisdiffraktometers Syntex P2₁ wurden bei $-100(5)^{\circ}$ C mit Mo- K_{α} -Strahlung nach der ω -Scan-Methode die Intensitäten von 3332 unabhängigen Reflexen mit $2\theta \leq 50^{\circ}$ gemessen. 1082 Reflexe mit Intensitäten $I \geq 3\sigma(I)$ wurden für die Strukturbestimmung verwendet. Die Struktur wurde mit Patterson-Methoden gelöst und bis zu einem *R*-Wert von 0.084 verfeinert (Lu anisotrop, C,N,Li isotrop, keine H-Atome).

Fig. 1 zeigt die Geometrie des $[C_5Me_5Lu(CH_3)_3]^-$ Anions, das idealisiert C_5^- Symmetrie besitzt. Das Lu-Atom ist infolge des hohen Raumbedarfs der $C_5Me_5^-$ Gruppe von dieser und den drei Methylgruppen C(11)-C(13) verzerrt tetraedrisch koordiniert. Die Winkel zwischen den Methylgruppen (C(11)-C(13))und dem Zentrum des Cyclopentadienylringes betragen für C(11), C(12) und C(13) 112(1), 120(1) bzw. 117(1)°, die Winkel C(11)-Lu-C(12), C(11)-Lu-C(13)und C(12)-Lu-C(13) betragen 110(1), 106(1) bzw. 90(1)°. Der Abstand vom Lutetiumatom zum Ringzentrum ist 241(2) pm, die Bindungsabstände zwischen den Ringatomen C(1)-C(5) und Lu variieren zwischen 269(2) und

Fig. 1. PLUTO-Zeichnung des Anions von [Li(tmed)₂][C₅Me₅Lu(CH₃)₃]. Wasserstoffatome sind nicht eingezeichnet.

TABELLE 2

271(2) pm; diese Werte stimmen gut mit den Abständen überein, die für eine der beiden C_5Me_5 -Gruppen in $(C_5Me_5)_2Lu(CH_2)_2P(CH_3)_2$ gefunden wurden [5].

Von den drei an das Lutetiumatom gebundenen Methylgruppen weisen zwei, C(11) und C(13), etwa gleichgrosse Lu—C-Bindungsabstände, 256(2) und 259(2) pm auf, die mit ihrer Grössenordnung den Abständen in $[Li(dme)]_3$ - $[Lu(CH_3)_6]$ entsprechen [8]. Dagegen ist der Abstand Lu—C(12) mit 239(2) pm deutlich kürzer und liegt im Bereich der Lu—C-Bindungslängen, wie sie z.B. in $(C_5H_5)_2LuCH_2SiMe_3$ ·THF und $(C_5H_5)_2LuC_6H_4CH_3$ ·4THF [9] auftreten.

Im [Li(tmed)₂]⁺-Kation ist das Lithiumatom tetraedrisch von den vier Stickstoffatomen der beiden tmed-Moleküle koordiniert. Die Li—N-Abstände variieren zwischen 202 und 227 pm [10].

Arbeitsvorschrift

 $[Li(tmed)_2][C_5Me_5Lu(CH_3)_3]$ (6): Zu einer Suspension von 1.576 g (5.6 mmol) LuCl₃ in 50 ml THF werden 5.6 mmol NaC₅Me₅, gelöst in 10 ml THF getropft. Nach 4 h Rühren gibt man 1.5 ml (11.2 mmol) tmed zu und kühlt die Reaktionsmischung auf -78°C. Anschliessend tropft man langsam eine Lösung von 16.8 mmol LiCH₃ in 10.7 ml Diethylether zu und rührt 3 h bei -78°C. Danach wird auf 20°C erwärmt und das Lösungsmittel im Vakuum abgezogen. Der Rückstand wird dreimal mit je 30 ml Diethylether extrahiert und die Etherlösung nach Filtration eingeengt. Beim Abkühlen auf -15°C kristallisieren farblose Nadeln aus. Ausbeute: 1.5 g (45%) 6, Zers.-P.: 70°C. Analysen: Gef.: C, 51.03; H, 9.15; N, 10.57; Li, 1.07; Lu, 29.30; C₂₅H₅₆LiLuN₄, ber.: C, 50.49; H, 9.49; N, 9.42; Li, 1.17; Lu, 29.43%.

 $[Li(tmed)_2][C_5Me_5Yb(CH_3)_3]$ (7). Verbindung 7 wird analog dargestellt. Ausbeute: 2.0 g (60%). Zers.-P.: 110°C. Analysen: Gef.: C, 51.51; H, 9.67; N, 9.82; Li, 1.15; Yb, 29.46; C₂₅H₅₆LiN₄Yb, ber.: C, 50.66; H, 9.52; N, 9.45; Li, 1.17; Yb, 29.19%.

Dank. Dem Fonds der Chemischen Industrie danken wir für finanzielle Unterstützung sowie für ein Doktoranden-Stipendium (E.H.). Unser Dank gilt ebenso der Deutschen Forschungsgemeinschaft und der TU Berlin für Sondermittel im Rahmen der Zusammenarbeit TUB-MIT, Forschungsprojekt "Materialien für neue Technologien".

Literatur

- 1 H. Schumann, H. Lauke, E. Hahn, M.J. Heeg und D. van der Helm, Organometallics, zur Publikation eingereicht,
- 2 H. Schumann, Angew. Chem., 96 (1984) 475.
- 3 P.L. Watson, J. Chem. Soc., Chem. Commun., (1980) 652.
- 4 N.M. Ely und M. Tsutsui, Inorg. Chem., 14 (1975) 2680.
- 5 H. Schumann, I. Albrecht, F.W. Reier und E. Hahn, Angew. Chem., 96 (1984) 503.
- 6 H. Schumann, J. Müller, N. Bruncks, H. Lauke, J. Pickardt, H. Schwarz und K. Eckardt, Organometallics, 3 (1984) 69.
- 7 P.L. Watson, J. Am. Chem. Soc., 105 (1983) 6491.
- 8 H. Schumann, H. Lauke, E. Hahn und J. Pickardt, J. Organometal. Chem., 263 (1984) 29.
- 9 H. Schumann, W. Genthe, N. Bruncks und J. Pickardt, Organometallics, 1 (1982) 1194.
- 10 Weitere Einzelheiten zur Kristallstrukturbestimmung können beim Fachinformationszentrum Energie Physik Mathematik, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD 51058, der Autoren und des Zeitschriftenzitats angefordert werden.